第五章 其他部門減碳

本章小節

- 5.1 前言
- 5.2 運輸部門
- 5.3 住商/建築部門
- 5.4 農業與廢棄物部門
- 5.5 小結

5.1 前言

我國碳排放主要來自能源/電力部門及工業部門,其他部門碳排放量占比雖不高,但是影響對象眾多,交通運輸部門排放量占總排放量 12.9%、住宅部門占 10.3%、商業/服務業部門占 9.8%、農業部門(含農業、林業、漁業、畜牧業)占總排放量 2.1%,以及廢棄物部門約占 1%。這些部門的碳排放量反應我國一般民眾的生活模式,為達成我國 2050 淨零排放目標,除了整體性減碳目標及可推動的科技或政策措施之外,更應該將社會因素納入考量,要有相關配套制度,以利於提升人民的減碳意識與鼓勵民眾主動積極參與。

本章將針對運輸部門、住商建築部門及農業/廢棄物部門進行碳排放來源分析,來了解各部門達成 2050 年淨零轉型的目標可能會遭遇到的主要挑戰,也對可行的減碳選項提出具體建議。運輸部門的碳排放源有來自公路、鐵路、海運等系統,主要面臨的挑戰在於大多數的運具還是使用汽柴油為燃料及如何推廣普及載具的電氣化,而在國際航空業和海運業對於碳排放量的規範已經有相關管制措施,要推動新技術的研發與開發低碳燃料以符合國際標準(詳見 5.2 節)。而在住商建築部門的碳排放源則包含空調、照明、家電等設備,主要挑戰除了在能源使用方面進行技術與行為節能之外,更須將建築物部門納入考量(詳見 5.3 節)。在農業部門與廢棄物部門方面,農業部門排放源主要為化學農藥與肥料在製造與施作時所造成的排放;廢棄物部門排放源主要來自各式廢棄物處理過程中之厭氣發酵之排放,包含事業及生活廢水、掩埋、堆肥等。主要挑戰在排放量雖少,但因排放源十分多元且分散,如何透過系統設計使減碳能更有效益是核心的課題(詳見 5.4 節)。此外,這些部門影響多數民眾的生活模式,因此,未來若要有效減碳,除了本章將提出之減碳措施與建議之外,更須要搭配其他經濟與社會誘因加速民眾與社會轉型,此部份將於第七章探討之。

5.2 運輸部門

摘要

面對全球暖化與氣候變遷帶來的威脅遽增,在 2050 年達到淨零排放已成為 全球的共識,國際能源總署針對全球溫室氣體減量情境結果顯示,全球的電力需 求只有在運輸部門是呈上升趨勢,未來運輸部門進行電氣化的轉型將會是國際上 較急迫的需求。根據我國行政院環境保護署各部門別的統計,運輸部門的溫室氣 體排放量主要來源為公路運輸,如:機車、小客車和大貨車等運具。因此,減少 公路運輸的溫室氣體排放量將會是我國運輸部門減碳的首要目標。以下幾點是提 供給運輸部門為達 2050 淨零排放目標的政策建議。

- 汽車及機車跟隨國際市場電氣化,另交通基礎設施也須廣設充電站以利於運 具電氣化與協助提升民眾使用意願。
- 訂定再生燃料使用相關法規,以期在運具全面電氣化前引進再生燃料以為過 渡期橋接之減碳方式。
- 3. 評估交通需求後依運送效能增建大眾運輸系統,並提供誘因以推廣使用,減少 運輸部門碳排量。
- 4. 儘速啟動研發並配合全球趨勢發展低碳航空、航海用燃油。

5.2.1 前言

我國運輸部門 2019 年溫室氣體排放量 總計 37 Mt CO2eq,約占 12.9%。而其中,公路運輸系統之燃料燃燒為絕大多數的排放來源,占比高達 96%,其餘為國內航空及水運燃料燃燒,以及軌道運輸用電。而再細分公路系統各類載具的排放量,占比最大為小客車(50.5%),其次依序為大貨車(18.3%)、機車(12.9%)、小貨車(11.8%),以及大客車(6.4%)(圖 5.2.1)。

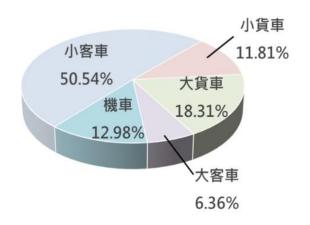


圖 5.2.1 2019 年公路系統各運具排放占比

由此數據可知,運輸部門要邁向淨零排放的目標,如何降低公路運輸系統中燃油機動車的排放是首要任務,目前主要路徑為「運具電動化」。國際能源總署 (IEA)在 2021 年發表的「全球電動車展望(Global EV Outlook)」報告中指出,2020 年是交通電氣化關鍵的一年,全球共有超過1,000 萬輛電動車上路,且在 2020 年全球電動車銷售量增加了70%,已占全球汽車總銷售量的4.6%。其中,中國擁有450 萬輛電動車,是全球數量最多的國家,而歐洲則是年度增幅最大,2020 年新註冊電動車數量達140萬,高於中國的120萬輛及美國的29.5萬輛。由以上結果可看出,儘管在COVID-19的大流行及全球經濟衰退趨勢造成新車銷售量下降,但卻未因此影響電動車的總體銷量。

根據交通部的統計,我國汽車與機車的領牌數分別為800多萬與1,400多萬, 幾乎家家戶戶都有汽、機車,表示運輸部門若要持續減少碳排放量,勢必需要改 變大部分國民的交通運輸行為(如改用較低碳的大眾運輸工具、改用能源效率較 高的電動車),這將影響民眾的日常生活,因此,除了技術之外,社會經濟因素 亦必須納入考量,這將是運輸部門邁向淨零排放目標重要挑戰。

5.2.2 運輸部門全球減碳趨勢

聯合國氣候變化網要公約第 26 次締約方大會(COP 26)主要透過國家自定預

期貢獻(INDC)做為各締約方自定減碳承諾的宣示。在 2021 年舉辦的 COP 26 整體達成了「逐步減少化石燃料」共識並寫入官方文本,各國在 COP 26 所簽署的重要承諾中,與運輸相關的重要承諾包括⁵⁶¹零碳車承諾與綠色航運承諾。在零碳車承諾當中,包含福特汽車(Ford)、通用汽車(General Mostors)、捷豹路虎(Jaguar Land Rover)、實士(Mercedes-Benz)等 11 家汽車製造商,承諾在 2035 年前在其主要市場所銷售的產品皆轉為零碳新車,這也代表在未來,電動車產品將成為市場主流。但此承諾仍有部分隱憂,即是德國福斯(Volkswagen)、日本豐田(Toyota)、及韓國現代(Hyundai)等汽車大廠仍未簽署該承諾。

另一項承諾為綠色航運承諾,會議中約 200 家企業承諾在 2030 年前實現零碳船舶和燃料的規模化、商業化之目標,亦是此次會議的重點。另外也完成由 22 國簽署的《克萊德班克宣言》(Clydebank Declaration),該宣言預計在 2025 年前將建立六條使用低碳或零碳燃料船舶的綠色航線,包含了橫跨亞洲到美洲、沙烏地阿拉伯到中國與印度等航線,並期望在 2030 年後增加新的航線。

目前全球在運輸部門的淨零排放策略主要依循聯合國經濟與社會事務部 (UN-DESA)在 2016 年所提出的驅動永續運輸發展報告(Mobilizing Sustainable Transport for Development)中所提及的需求減量(Avoid)、運具轉移(Shift)技術改善 (Improve)三個主軸⁵⁶²,而各國在作法上大致可分為以下三項策略(Box 5.2.1):

- 運輸及旅運需求系統的優化及管理:增加誘因,鼓勵民眾使用公共運輸,或透過系統管制達到無縫運輸或貨運,並減少私人車輛的使用量,以達減碳目的;
- 2. 低碳運具的使用與電氣化:透過獎勵措施的施行(電動車購車補貼、稅收優惠)、 二氧化碳(CO₂)排放標準的法規制定,以及基礎設施的強化等措施,來加強推 動低碳運具;
- 3. 載具能源效率提升及替代性燃料的使用:藉由優化物流及人流的管理,提高運

•

⁵⁶¹ COP26 sustainability report, The 26th UN Climate Change Conference, 2021

United Nations -High-level Advisory Group on Sustainable Transport (2016). Mobilizing Sustainable Transport for Development.

Box 5.2.1 各國運輸部門的作法⁵⁶⁴

表 5.2.1 各國運輸部門的作法

策略	做法			
運輸及旅運 需求系統的 優化及管理	 德國 Lufthansa Rail & Fly 鐵道與航空票證合一制度⁵⁶⁵ 日本提升公車班表準點率策略⁵⁶⁶ 新加坡擁車證(Certificate of Entitlement, COE)⁵⁶⁷ 韓國透過共享制度及推廣無車日⁵⁶⁸ 挪威奧斯陸減少市區停車格 			
低碳運具的使用與電化	 獎勵措施: 美國購買電動車享有最高 12,500 美元的稅額抵減⁵⁶⁹ 加拿大電動車消費端上限 5,000 美元的聯邦退款⁵⁷⁰ 日本電動車補助金預算到 334.9 億日圓⁵⁷¹ 韓國電動車補助,個人消費稅、教育稅可抵免。 法規制定: 加拿大、中國、美國排放量標準為 114g CO₂/km 印度排放量標準為 134g CO₂/km 歐盟部分區域車輛排放標準為 95g CO₂/km⁵⁷²。 基礎設施的強化: 歐盟電動車充電站目標(2030 年每 10 輛電動車須配備 1 個充電裝置比例) ⁵⁷³ 中國數位基礎設施公共支出計畫(1.4 萬億美元),包含電動車充電站(2025 年以裝設 120 萬個充電器為目標) ⁵⁷⁴ 美國基礎設施激勵計畫,包含 500,000 個充電設施及 100,000 個充電站⁵⁷⁵ 加拿大零碳排車輛基礎設施(1.12 億美元),包含大樓和工作場所的二級充電椿設立。 			

⁵⁶³ SLOCAT (2018) Transport and Climate Change Global Status Report.

⁵⁶⁴ 交通部運輸研究所(2013)。智慧型運輸系統與節能減碳關聯性之研究。

⁵⁶⁵ 交通部運輸研究所(2020)。國際鐵道運輸發展議題與政策之探討—以數位轉型發展為例。

⁵⁶⁶ International Transport Forum (2012) Seamless Transport: Making Connections - Highlights of the International Transport Forum 2012

⁵⁶⁷ Singapore infopedia (2019). Certificate of Entitlement.

⁵⁶⁸ C40 (2011). Seoul Car-Free Days Have Reduced CO₂ Emissions by 10% Annually.

⁵⁶⁹ Green Car Report (2021) US EV sales have been record-breaking so far in 2021, despite supply chain issues.

Feltmate, T. (2021) The Canada/US Electric Vehicle Market: Navigating the Road Ahead. TD Economics.

⁵⁷¹ 經濟產業省自動車課(2020) 自動車的現狀和電動化的推進。https://www.esisyab.iis.u-tokyo.ac.jp/symposium/20200804/20200804-01.pdf

⁵⁷² 王忠慶(2017),全球電動車發展現況與未來趨勢,今日合庫,509期,2017。

⁵⁷³ EU (2014) European Alternative Fuels Infrastructure Directive.

⁵⁷⁴ 中國國家能源局(2015) 電動汽車充電基礎設施發展指南。

⁵⁷⁵ The White House (2021), Biden Administration Advances Electric Vehicle Charging Infrastructure.

策略	做法		
載具能源效 率提升及替 代性燃料的 使用	 英國潔淨成長策略(Clean Growth Strategy)發展低碳交通技術以及燃料創新技術⁵⁷⁶ 英國制定運輸業再生燃料責任的規定(Renewable Transport Fuel Obligation Program, RTFO), 鼓勵生產生質燃料⁵⁷⁷; 美國加州的空氣資源局(Air Resource Board, ARB)推動低碳燃油標準(LCFS)計畫⁵⁷⁸,要求「石油精煉廠」、「汽油和柴油進口商」及「汽車運輸燃料的批發商」須生產及使用低碳燃油 加拿大潔淨技術和低碳燃料的開發、使用與推廣,並制定再生燃料法規(Renewable Fuels Regulations),包含了汽油中混合再生燃料(如乙醇)的比例為5%、柴油為2%⁵⁷⁹; 日本氫能基本戰略(Basic Hydrogen Strategy)⁵⁸⁰發展氫能運具。 		

全世界有近 90%的貿易都是靠海上運輸,全球船舶的碳排放量約占總量之 3%,航運業勢必面臨 2050 年前實現淨零排放的壓力⁵⁸¹。而國際海事組織(IMO) 有訂定相關排放規範,如:1997 年訂定防止船舶污染國際公約(MARPOL),2011 年開始對船舶的能源效率進行管制,如建立能耗效率設計指數(EEDI)與建立船舶能效管理計畫(SEEMP)等。也在 2018 年公布國際航運減碳目標,希望在 2030 年之前減少 40%的二氧化碳排放量,2050 年減少 70%的排放量 (2008 年為基期) 582。

航空業的碳排放量占全球約 2.5%,國際民航組織(ICAO)於 2016 年推動國際航空業碳抵換與減量計畫(CORSIA)作為全球碳管制措施,管理全球國際航線的碳排放,如:ISO/IEC 17011、ISO 14065 等標準基礎規範⁵⁸³。另外,也對新造航空器的二氧化碳排放進行規範,以推動新技術研發運用,並確保汰換舊型航空器,已投入生產之航空器須於 2028 年前達到標準。ICAO 2019 年提出兩個目標:(1)

⁵⁷⁷ UK (2012) Guidance of Renewable Transport Fuel Obligation.

582 交通部運輸研究所(2019) 各國因應 2020 年船舶低硫燃油規定策略之研析。

⁵⁷⁶ UK (2018) Clean Growth Strategy: executive summary.

⁵⁷⁸ California Air Resources Board (2020) Monthly LCFS Credit Transfer Activity Reports.

⁵⁷⁹ Government of Canada (2019.06.28) Canada's clean fuel standard: Reducing pollution, fighting climate change and driving clean growth.

⁵⁸⁰ CMS Expert Guides. (2017) Hydrogen Law and Regulation in Japan.

⁵⁸¹ 交通部運輸研究所(2020) 國際綠色航運激勵機制初探。

⁵⁸³ ICAO (2019). News Release: CORSIA Implementation on Course, ICAO (Mar. 6, 2019).

到 2050 年前每年提升 2%用油效率;(2) 2020 年起碳排零成長。而國際航空運輸 協會(IATA)以 2005 年為基準年,設定目標至 2020 年前每年平均提升 1.5%的用 油效率,於 2020 年達到碳排零成長, 2050 年降到 2005 年排放量的 50%⁵⁸⁴。

5.2.3 運輸部門減碳選項分析

運輸部門目前非常依賴化石燃料,為達成減少碳排放的目標,將針對以下幾 個減碳選項進行分析,包含替代燃料、載具電氣化與創新技術等。在替代燃料的 部分,運輸部門包含各種運輸模式,如公路、鐵路、海運與空運,不同運輸模式 所用的交通載具各有適合的燃料解決方案。以短程運輸(小汽車及機車)而言, 電動化較占優勢;在長程運輸中,如海運和空運,所需要的替代燃料則以生質航 空燃油、液態氫燃料較被看好。另外,永續航空燃料(Sustainable Aviation Fuels, SAF)是以植物性原材料、回收植物油、動物脂肪或廢料製成的生質航空燃油585, 亦為一值得研發之標的。

交通運具電氣化將為降低運輸部門碳排放的關鍵作法,也可搭配智慧電網做 為儲能載體,發揮減碳的效用。目前產業主要著重於開發公路運輸的小客車、大 貨車從燃油驅動轉變成電力驅動所需的電池技術,當今電動車所使用的電池大部 分是鋰離子電池,之後將持續提升電池的效能及安全性,並持續開發多元化的電 池類型,包含鋰離子空氣電池、鈉離子電池、固態電池等。此外,透過氫燃料電 池發展迅速,提供多元應用,也有了氫能車的問世,讓未來在低碳交通載具方面 多了一項選擇。惟氫氣來源及加氫站設置問題仍待解決,且氫能車整體能源效率 遠低於電動車,故氫能車技術未來須有突破性的進展,否則不易與電動車競爭。 從另一角度看,若電動車和氫能車的能量來源都是綠電,氫能車是要以綠電產氫, 再儲存輸送氫,最後再把氫以燃料電池在車內轉成電,車輛即成為移動電廠。因

⁵⁸⁴ 交通部運輸研究所(2018) 國際航空探排管制發展初析。

⁵⁸⁵ BP. Sustainable aviation fuel – what is it and why is it important? https://www.bp.com/en/global/air-bp/news-and-views/views/what-is-sustainable-aviation-fuel-safand-why-is-it-important.html

此可以想見若直接使用電動車,在能源利用上也將較為單純。除非我國日後有大量的再生能源發電量,屆時可能會有部分綠電在用電需求低的時間過剩,利用過剩的綠電轉用於製氫以為儲能載體,氫能車的競爭力才有機會提升。

透過整體公共運輸系統規劃,加強偏鄉的公共運輸可行性,提升軌道運輸效率具備高減碳潛力。共享交通是一種新型態的運輸服務,可以改變人在城市中的移動方式,例如共享機車、共享自行車、共享汽車等,由於科技發展與網路的普及,共享運具逐漸可提供完整服務,在都會區導入共享運具的概念預期可以改變交通量、溫室氣體排放等問題。

5.2.4 我國運輸部門現有減碳投入項目

運輸部門針對減少溫室氣體排放的推動策略有以下三大方向,分別為公共運輸、綠色低碳運具、運具能源使用效率。目前都會區的運輸系統造成溫室氣體的排放量極高,統計六都的溫室氣體排放占比為全國的65%,顯示都會區應該發展公共運輸系統,加強交通與運輸需求的管理措施,以減少溫室氣體的排放,例如提升公路公共運輸之運量、提升鐵路運輸系統的運量、提供無縫轉乘的服務規劃等作法。

而運輸部門碳排放的主要來源為交通工具,我國的交通工具高度依賴化石燃料,有97%是使用汽柴油燃料,除了產生較多的溫室氣體之外,汽柴油引擎尾氣排放也是造成空氣污染的主要原因⁵⁸⁶。目前我國政策逐步朝向汽機車電動化,並鼓勵民眾使用大眾運輸系統,針對公路車輛、軌道列車、船隻、飛機等交通載具,將能源需求從燃油轉型為電力或低碳燃料,例如環島列車電氣化、電動運具的推廣補助與各縣市政府建置綠色載具的交通環境,另外,亦須進行整體性的充電基礎設施佈建。而在2035年至2040年開始禁售燃油車與2050年將朝汽機車全面電氣化的全球趨勢下,以目前我國汽車總數793萬輛和機車總數1,376萬輛進行評估,在汽機車全部電氣化後,每天將增加約4,000萬度電的需求,每年會增加

260

⁵⁸⁶ 交通部運輸研究所(2018) 市區公車減少排污因應對策之初探。

約 146 億度電的使用。從每天的電力負載曲線來看,夏季和冬季的夜間離峰都可提供 4,000 萬度以上的電力供應,應可滿足汽機車全面電氣化情境時的用電需求 587。

另外,隨著科技持續的創新發展,透過創新科技提升運具及運輸系統能源使用效率是手段之一,然而智慧運輸科技應用日趨成熟,如何優化行車路徑,避免塞車與停等的情況也可創造節能減碳效益588。為維持現有運輸系統基礎設施的品質,應及早規劃環島海運與鐵路、公路系統升級,建構高能源使用效率的綠色運輸網絡。藉由提升公共運輸服務品質,以減少私人運具的使用習慣,也可對減碳作出貢獻。小客車與機車每人公里能量消耗是公車的1.1~1.3倍,是軌道運輸的3~4倍,運具的乘載量直接影響能源使用效率。然而相較於私人運具來說,使用上便利性不足也是推動公共運輸的阻力589。

5.2.5 政策建議

本建議書對運輸部門的政策建議如下:

 汽車及機車跟隨國際市場電氣化,另交通基礎設施也須廣設充電站以利於運 具電氣化與協助提升民眾使用意願

儘速訂定燃油車退場時程,並協助活化電動車的市場。我國電動車的基礎設施建置尚有不足,最直接的即是充電站的數量,目前僅有少數縣市建置超過百座充電站,且目前戶外、公有停車場等場所的充電樁數量也嚴重不足,這些將會影響民眾參與減碳的意願,因此建議儘早制定電動車充電配套條文,例如充電設備設置場所及比例,附加相關罰責,使政府機關、業者及民眾得以依循。

 訂定再生燃料使用相關法規,以期在運具全面電氣化前引進再生燃料以為過 渡期橋接之減碳方式

⁵⁸⁷ 郎若帆(2018) 電動車推動政策對傳統電網的挑戰,時事觀點,台灣經濟研究院。

⁵⁸⁸ 交通部運輸研究所(2013) 公共運輸發展政策推動效益之評估與回饋—運具選擇行為變動之分析及決策支援系統建置。

⁵⁸⁹ 交通部運輸研究所(2009) 綠色運輸系統發展政策之探討。

在運輸載具全面電氣化的過程中,運輸部門的能源需求會由燃油轉型為電力或是低碳燃料為主,而在運輸載具還未達到全面電氣化且又必須逐年減少使用化石燃料以降低碳排放量的情境,國內可訂定再生燃料相關法規,透過法規逐步建構再生燃料的使用標準量規範,逐步降低進口化石燃料的使用,使得弱勢之用車族群可以有較長的時間來完成運具的汰舊換新。

3. 評估交通需求後依運送效能增建大眾運輸系統,提供誘因以推廣使用,以減少 運輸部門碳排量

發展大眾運輸是節能減碳的有效措施,應整體規劃與建設可減少溫室氣體排放及污染密度低的運輸系統,透過公共運輸服務品質提升讓民眾樂於搭乘,並且應該加強運輸需求管理,鼓勵採用大眾運輸及自行車等綠色運輸工具,以期減少目前高比例的私人運具使用。

4. 儘速啟動研發並配合全球趨勢發展低碳航空航海燃油

由於航空業與航海業目前要使用全電動提供動力來源還有一段技術開發期, 因此在過渡期使用低碳燃油是航空業與航海業可以大幅減少碳排放的主要手段。 在各國極力推動使用低碳燃油的中長期計畫並且規劃建立生產工廠下,雖然我國 已有研發單位發展低碳燃油的技術,但在政策、技術成熟度、市場環境等各面向 仍具有發展空間,因此建議強化我國發展動能,以期儘速與國際接軌。

5.3 住商/建築部門

摘要

全球建築與營造部門對於最終能源消費及碳排貢獻占比超過三分之一,主要排放來源為日常使用電力如空調、照明與其他設備,以及建築材料生產造成的排放。故須要透過降低住商/建築部門之電力使用需求、提升既有建築物之能源效率,以及透過延長建築物的使用壽命等策略減少住商/建築部門所造成的排碳。綜合我國各種狀況,建議住商/建築部門推動下列做法:

- 儘速推動既有建築物改造與翻修,如透過建築輕量化、延長建築使用壽命、減少材料損失或使用替代材料,如以自然資材取代建築材料等方式來降低因建築材料生產所造成的碳排放。
- 2. 儘速啟動投入供冷的新興技術研發,降低住商/建築部門因供冷設備使用消耗 電力所造成的碳排。
- 3. 2050 年以前應達成住商/建築部門之系統整合基礎設施建置與全面擴散,並廣 用智慧化能源管理與靈活的電力調度,協助完善住商/建築部門之節能減碳效 益。

5.3.1 前言

住商/建築部門之範疇,依照我國住商部門溫室氣體排放管制行動方案⁵⁹⁰,主要包括住宅部門與服務業部門。其中,服務業包括批發及零售業、住宿餐飲業、運輸服務業、通信業、工商服務業、社會服務及個人服務業、公共行政業與其他(金融保險及不動產業、倉儲業等)。而我國住商部門範疇,主要對應國際建築與營造(building and construction)部門。

⁵⁹⁰ 內政部(2018) 住商部門溫室氣體排放管制行動方案(第一期階段)核定本。 https://ghgrule.epa.gov.tw/admin/resource/files/04 住商部門溫室氣體排放管制行動方案(核定

mtps://gngrute.epa.gov.tw/admin/resource/mes/04 任尚部门/ 查至果短排放官制行動力系位本).pdf

根據聯合國環境規劃署(UNEP)2020 年的報告⁵⁹¹,全球 2019 年建築與營造部 門對於最終能源消費貢獻占比最大(35%),且若將建築本身營建材料之碳排納入, 則二氧化碳(CO₂)排放量高達全球 38%⁵⁹² (圖 5.3.1)。

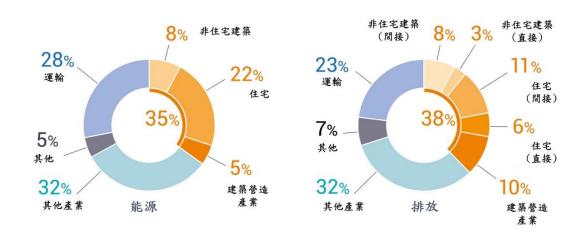


圖 5.3.1 2019 年全球建築與營造部門對於最終能源消費及碳排貢獻593

而就全球建築與營造部門之價值鏈排放量(包括營建材料)進行檢視 (圖5.3.2),建材生產階段(包括營造水泥/鋼鐵生產與其他雜項)占整體之25.4%,在建築營造階段(主為能源使用)占1%,而在建築日常使用階段占比最高,為73.6%【包括煤炭、石油與天然氣為22.9%以及電力與熱(間接排放)50.7%】。其中,建築材料生產的排放主要來自水泥和鋼鐵製造業,因全球建築與營造部門就占水泥需求的50%與鋼鐵需求的30%594。

264

United Nations Environment Programme (2020) 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. Nairobi. https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR FULL%20REPORT.pdf

^{592 38%}包括商業部門建築(non-residential building)間接排放(電力)8%、直接排放3%、住宅部門建築(residential building)間接排放11%、直接排放6%,以及建築營造產業(包括建築本身材料)10%。

⁵⁹³ 同前揭註 591。

⁵⁹⁴ 同前揭註 591。

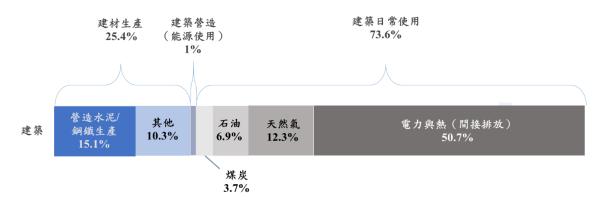


圖 5.3.2 建築部門價值鏈整體排放源分析595

進一步對應我國住商部門日常使用與營運之排放源分析(圖 5.3.3),其中 2019年住宅部門碳排放量為 28.5 Mt CO₂eq,電力排放為主要排放來源(占 84%),電力排放中主要是空調約占 2 成、照明占約 3 成、其他設備占 5 成(以家電設備為主);同年商業部門碳排放量為 27.1 Mt CO₂eq,電力排放亦為主要排放源(占 87%),其中主要是來自空調約占 5 成、照明占 3 成、其他設備占 2 成^{596,597}。

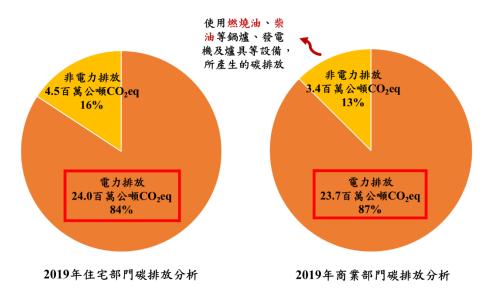


圖 5.3.3 我國住商部門日常使用與營運之碳排放分析598

⁵⁹⁵ 同前揭註 591。

⁵⁹⁶ 內政部與經濟部(2021) 住商部門淨零排放路徑評估簡報,行政院4月1日專案工作組會議 (資料未公開)。

⁵⁹⁷ 林憲德(2015)。建築碳足跡。詹氏出版。轉引自內政部與經濟部(2021)住商部門淨零排放路 徑評估簡報,行政院4月1日專案工作組會議(未公開)。

⁵⁹⁸ 同前揭註 596。

綜合前述我國住商部門日常使用與營運之碳排放分析,我國住商/建築部門在淨零排放轉型之主要挑戰,在建築日常使用與營運部分主要為必須(1)降低因日常使用電力產生之排放,以及(2)降低因燃料使用(如天然氣、燃料油、柴油等)所產生的碳排⁵⁹⁹。而非屬建築日常使用與營運部分,則是因營建材料使用產生的碳排,根據 Tatsuo Oka (2013)以幾個國家的產業關聯表所統計的建築產業建材占各國碳排總量之比例,臺灣也至少有 10%⁶⁰⁰,因此,(3)降低因使用營建材料產生的碳排也是我國淨零排放轉型須要面對的挑戰。

對於我國而言,(1)降低因日常使用電力產生之排放,則須要考慮降低住商/建築部門之電力使用需求或是提升使用無碳電力;(2)降低因燃料使用所產生的碳排部分,則是須要考慮降低住商/建築部門之燃料使用需求或是提升無碳燃料的使用;(3)降低因使用營建材料產生的碳排部分,則是可以透過延長建築物的使用壽命、減少水泥與鋼鐵的使用或是用較低碳排(lower embodied carbon)之材料作為解決方案。

5.3.2 住商/建築部門全球減碳趨勢

全球住商/建築部門的減碳,主要可以區分為(1)住商活動減碳趨勢與(圖 5.3.4) 與(2)建築外殼(building envelop)減碳趨勢(圖 5.3.5)兩類⁶⁰¹。在住商活動減碳趨 勢部分,全球在淨零排放趨勢下最直接的二氧化碳減排方向為電氣化(尤其是供 暖設施)與提升能源效率(設備、建物設計),兩者共可減約 70%的碳排;其他 方向包括行為改變/降低需求以及利用再生能源(包括生質能、氫能、其他再生能

⁵⁹⁹ 同前揭註 596。

⁶⁰⁰ 內政部建築研究所(2019) 建築材料碳足跡資料系統建置之研究。
https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvT2xkRmlsZV9BYnJpX0dvdi9y
ZXNIYXJjaC8yOTMzLzE1ODYwNzM0MDV4NWU4ZGQucGRm&n=MTnlu7rnr4nmnZDmlpn
norPotrPot6Hos4fmlpnns7vntbHlu7rnva7kuYvnoJTnqbYucGRm

⁶⁰¹ IEA (2021) Net zero by 2050: a Roadmap for the global energy sector. https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector CORR.pdf

源)(圖5.3.4)。

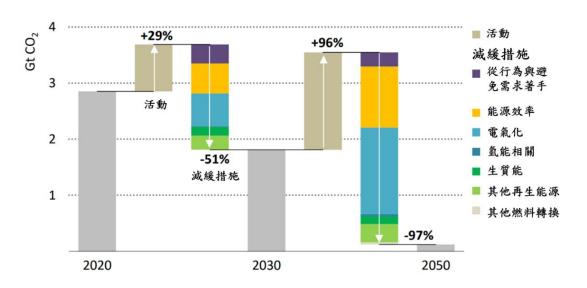


圖 5.3.4 淨零排放情境下,住商活動之全球二氧化碳減量選項602

在建築外殼減碳趨勢部分,朝零碳改造之建築外殼結構改善和新建築設計是讓建築內能源強度(供暖、冷卻)可以降低的主要原因。國際能源總署(IEA)報告指出⁶⁰³,為達淨零排放,2050 年將有 85%以上的建築物,其中包含新零碳建築(New Zero Carbon Ready Building, New ZCRB)及重新裝修成為零碳建築(Retrofit ZCRB),須符合零碳建築之能源規範要求(ZCRB energy codes)。而從現在至 2030年,全球須要針對新建築引入強制性零碳建築能源規範,並在 2030年之後,每年需要有 2.5%既有建築重新裝修以達成符合零碳建築規範(圖 5.3.5)。另外,如運用人工智慧有效管理能源系統之電網互動式高效建築(grid-interactive efficient building)與利用不同建築物、再生能源設施組成特定區域,致使達到區域內能源平衡或正輸出之正能源區域(positive energy zone)亦為重要發展趨勢⁶⁰⁴。不過,在建築物營造與翻修部分,因我國都市更新緩慢,以國際推動新建淨零建築方向可能緩不濟急,較有可能的方向為推動既有建築重新裝修來提升建築減碳的潛力,不須要皆以都市更新方法重建,而是透過提高住商部門建築耐用性與改善內部節

⁶⁰² 同前揭註 601。

⁶⁰³ 同前揭註 601。

⁶⁰⁴ 工業技術研究院(2021)「淨零建築」願景工作坊建築節能設備技術發展簡報。

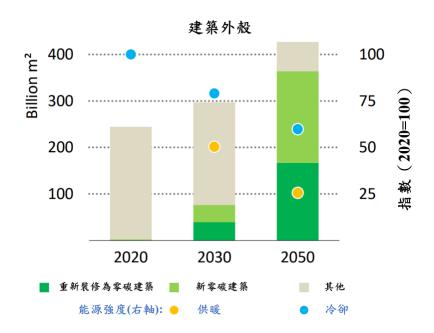


圖 5.3.5 2020 年至 2050 年建築外殼改善趨勢 (面積)與供熱與冷卻之 能源密度變化⁶⁰⁵

5.3.3 住商/建築部門減碳選項分析

由前述,排除建築營造階段,住商/建築部門減主要排放源來自電力(約50.7%)、營建材料(25.4%)與燃料使用(22.9%)(圖5.3.2),這些可透過設備能效提升、建築物營造與翻修以及系統整合三大面向加以改善⁶⁰⁶:

1. 設備能效提升

- 供熱/供冷設備(如空調、熱泵、鍋爐)
- 照明設備(如燈具、照明等)
- 結合 ICT 與感測器,並運用人工智慧與大數據等以提升設備能效之技術

2. 建築物營造與翻修

• 既有建築翻修(如改善建築設計、通風、外殼結構與裝置結構性絕緣板)

⁶⁰⁵ 同前揭註 601。

⁶⁰⁶ IEA (2021) ETP clean energy technology guide. https://www.iea.org/articles/etp-clean-energy-technology-guide

- 建築輕量化(如加強筋索地板系統、使用複合材料)
- 延長建築使用壽命(如使用模塊化組件可以循環利用)
- 減少材料損失(如利用積層製造或預製方式生產)
- 建置淨零建築(如建置零碳建築能源規範、導入再生能源(屋頂太陽光 電)、儲電設施以及與運輸系統整合(如充電樁)等)

3. 系統整合

- 智慧電表電網
- 自動需求量反應技術
- 直流建築與微電網系統
- 區域能源平衡
- 能源管理系統

其中,大部分技術都有相當的技術成熟度,但在供暖/供冷設備,以及建築輕 量化技術上仍有少數技術仍在實驗室研究階段(TRL 4 以下), 如主動潛熱蓄熱 技術、結合滲透膜之蒸發冷卻技術、液體或固體乾燥劑蒸發冷卻系統、具有儲存 功能的整合式熱泵、固態設備冷卻系統(壓熱式(Barocaloric)、彈熱式 (Elastocaloric)) 與加強筋索地板系統(Box 5.3.1)等。我國因亞熱帶氣候關係,冬 季供暖設備的需求較低,但夏季的供冷設備需求高,因此有對於供冷設備能效提 升的技術較具有需求。而建築材料與結構若可以朝向降低減少水泥與鋼鐵的使用 或是用較低碳排(lower embodied carbon)之材料進行取代,同時達到不減少建築耐 震耐災強度的前提下,則可對我國建築/住商排碳的降低具有貢獻潛力。

Box 5.3.1 加強筋索地板系統⁶⁰⁷

加強筋索地板是瑞士聯邦材料科學與技術實驗室地區性永續建築科技計 畫(Hilo)中由蘇黎世聯邦理工學院 ETH Zürich 開發出。為一種薄混凝土元件, 主要依靠雙曲面外殼來承受載重。樓板和翅片厚度不超過 20 mm, 可讓 70%的 混凝土被低密度絕緣材料替代以提高地板隔熱相關性能。前一代原型測試能夠 生產 2 公分薄的混凝土牆和外殼而不會龜裂。但使用較低量水泥仍須進行試 驗。

⁶⁰⁷ Zeiba D. (2019) Swiss researchers develop high-tech floor that minimizes concrete use. https://www.archpaper.com/2019/01/eth-functionally-integrated-funicular-floor-system

5.3.4 我國住商/建築部門現有減碳投入項目

依照溫室氣體減量及管理法第9條規定,中央主管機關為推動國家溫室氣體 減量政策,應依我國經濟、能源、環境狀況,擬訂國家因應氣候變遷行動綱領及 溫室氣體減量推動方案,會商中央目的事業主管機關,報請行政院核定後實施。 608。內政部因作為住宅部門及建築之主管機關,故依該法與其施行細則第 6條, 整合內政部、經濟部與其它各部會相關的方案,於 2018 年 9 月核定住商部門溫 室氣體排放管制行動方案 (第一期階段為 2016 年至 2020 年), 其內容包括各部 門溫室氣體排放管制目標、期程及具經濟誘因之措施609,610,現有減碳投入策略包 括提升能源效率與效能分級管理、強化節能法規並提供既有建築獎勵措施,此外 也推動新舊建築減量措施與建構低碳城市生活圈等。實際推動減碳選項則包括如: 建築物外殼耗能資訊揭露、服務業能源大用戶訂定 1% 用雷效率改善目標、連 鎖企業落實節能績效保證專案,與縣市共推住商節電行動等。但可以發現,國際 較重視之建築營造與翻修中相關的項目如改善建築設計、通風、外殼結構與裝置 結構性絕緣板、建築輕量化、延長建築使用壽命、減少材料損失與建置淨零建築 等,我國較未著墨與重視,因此以長遠邁向淨零排放的角度來看,短中期因為我 國都市更新較為緩慢,可先著重於既有建築物之改造與翻修,但同步也應開始重 視新建建物在上游設計端之調整與改變,方能避免建築物後續在營運使用時所造 成碳排。而住商部門用電設備效率精進、強化新建建築技術規則、研議老舊建築 強制性規定則是應該持續推動。

5.3.5 政策建議

本建議書的政策建議有三點如下:

1. 儘速推動既有建築物改造與翻修,如透過建築輕量化、延長建築使用壽命、減

⁶⁰⁸ 行政院環境保護署(2015) 溫室氣體減量及管理法。全國法規資料庫。 https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020098

⁶⁰⁹ 國家溫室氣體減量法規資訊網(2021) 部門別溫室氣體排放管制行動方案。 https://ghgrule.epa.gov.tw/action/action page/52

⁶¹⁰ 同前揭註 590。

少材料損失或使用替代材料如以自然資材取代建築材料等方式來降低因建築材料生產所造成的碳排放

在建築物營造與翻修部分,因我國都市更新緩慢,以國際方向推動新建淨零建築可能緩不濟急,較有可能的方向為推動既有建築重新裝修來提升建築減碳的潛力,不須皆以都市更新方法重建,而是透過提高住商部門建築耐用性與改善內部節能及絕緣等作法來達成;同時在建築材料應用上,可以透過建築輕量化、延長建築使用壽命與減少材料損失,來降低因建築材料生產所造成的碳排放;亦可以考慮使用替代材料(如木材、自然資材與低碳材料等)取代部分建築材料使用,這樣一來除了可以節省能源及減少碳排外,亦有機會協助增加森林碳匯,透過森林永續經營方式,將成熟的木材進行砍伐,再造新林,使新苗木成長過程中可以較快速的吸收大氣中的二氧化碳。進行深度建築物翻新與能源改造須要較多前期投資資金,對大多數住宅擁有者可能會是挑戰,因此須要透過有政策誘因之創新型經濟模式才能有效推動。

2. 儘速啟動投入供冷的新興技術研發,降低住商/建築部門因供冷設備使用消耗 電力所造成的碳排

若排除建築營造階段,其實住商/建築部門減主要排放源多半來自電力使用。 過往之住商部門溫室氣體排放管制行動方案已長期投入設備能效提升部分,希望 能夠降低因電力使用所造成的碳排。檢視國際能源總署有關供冷技術發展,如結 合滲透膜之蒸發冷卻技術、液體或固體乾燥劑蒸發冷卻系統等,目前尚在實驗室 階段仍未成熟,故須要投入研發來加速技術的商業化。我國節能相關技術與產業 發展過往已累積相當實力,故可考慮透過產學合作模式共同研發相關技術,並透 過實際場域之應用與測試,來確認技術的可行性,並擴大對於建築/住商部門的減 碳效果。

3. 2050 年以前應達成住商/建築部門之系統整合基礎設施建置與全面擴散,並廣 用智慧化能源管理與靈活的電力調度,協助完善住商/建築部門之節能減碳效 益 除了將既有建築做好改造及絕緣,以及透過提升住商/建築部門使用的電器使用效率,來促成大幅度減碳外,此外也須要考慮從系統整合面向,從完善能源管理與調度做為提升能源效率與降低能耗的手段之一。目前政府已經具體規劃並推動智慧電表、智慧電網與自動需量反應等技術之應用,來提升使用端的能源效率,但尚未完全達到一定程度之普及,因此未來仍須持續加以推動,讓相關基礎設施之建置能夠順利擴散,以透過智慧化的能源管理與靈活的電力調度,協助提升住商/建築部門之節能減碳效益。

5.4 農業與廢棄物部門

摘要

我國農業與廢棄物部門的 2018 年碳排量合計約占全國總排放量約 3%左右, 其比例雖不高,但以農業操作(如土壤施肥、水稻種植等)排放占比為最大宗, 近一半的農業部門排放量皆源自於此,為協力達成我國 2050 淨零排放的目標, 農業部門將如何在減少碳排放量的同時仍能保障國內糧食供給安全,是一重要的 考量因子;另一方面,廢棄物部門以廢棄物處理本身的排放占比為最大,約達該 部門排放量的九成,因此,加速導入創新技術與廢棄物再利用模式以降低排放, 將是減碳能否達標的關鍵要素。

由於此二大部門所須推動的減碳措施其關聯的層面甚廣,包含農、林、漁、 畜牧與生態保育等面向,建議國內的農業與廢棄物部門的減碳作為如下:

- 以低碳農法(如無氮肥農法或低甲烷禽畜飼料添加劑)為師,調整農牧作法以提升減排成效。
- 2. 推動農林漁牧設施(如溫室、水產養殖及漁船等運輸機具)的電氣化,並加速 導入綠能的應用。
- 收集農業部門農林剩餘資材產製生物炭,可減少因露天燃燒造成的空污問題, 亦同時減少碳排及促進再利用。
- 4. 完備公平透明的農業部門碳權交易機制,以善用農業部門天然碳匯能力,並緩 解我國零碳排轉型時依賴無碳能源之壓力。
- 5. 以不適耕作土地種植短期收成之生質作物(如狼尾草),詳見生質能一節。
- 6. 落實成熟技術並研發新技術,以解決廢棄物甲烷排放問題。

5.4.1 前言

我國以農立國,但隨著時代變遷與科技發展,工商業蔚為主流,因此,反映 在我國溫室氣體的排放推估上,農業部門的排放於 2018 年僅占我國總碳排量的 2%,而廢棄物部門僅占1%。但是若能有效推動農業與廢棄物部門的減排措施, 並以更積極的思維來協助其他部門共同推動全面減碳的工作,相信將是達成我國 2050 淨零排放目標的一大助力。本章先就部門排放源加以分析,接續提出淨零 轉型的主要挑戰以及盤點我國現有減碳投入選項,期綜整上述各項資訊為國內的 農業與廢棄物部門之減碳作為提出合適的政策建議。

5.4.2 農業與廢棄物部門排放源分析

1. 農業部門

農業部門溫室氣體,包括二氧化碳(CO₂)、甲烷、氧化亞氮等,主要因施用以 化石燃料為初始原料的農藥及肥料,在製造過程中會間接排放溫室氣體,且施用 到土壤中的化學合成肥料會造成氧化亞氮釋放於大氣中611,因此,近來各國亦逐 漸關注如何減少化學農藥及肥料的使用,期可降低能源消耗與溫室氣體排放。再 加上國際上以農業為主的國家大量養殖反芻動物,如牛、羊與鹿等動物的消化與 排泄過程中亦會產生大量的甲烷、氧化亞氮等溫室氣體,導致全球農業部門造成 的溫室氣體排放占比不容小覷⁶¹²,相關研究報告亦指出^{613,614},全球約 11.9%溫室 氣體排放來自於農業。我國的農業結構以農作物耕種為大宗,自加入世界貿易組 織(World Trade Organization, WTO)及經貿自由化後,對國內農業生產帶來衝擊,

⁶¹¹ 阮英閔(2021) 氣候變遷下有機農業所扮演的角色。有機農業推動中心。 https://www.oapc.org.tw/氣候變遷下有機農業所扮演的角色/

⁶¹² 行政院農業委員會(2020) 我國農林部門溫室氣體吸收量大於排放量,兼具糧食安全與減碳 貢獻。行政院農業委員會。

https://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=8266

⁶¹³ Intergovernmental Panel on Climate Change (IPCC) (2019) Climate Change and Land. IPCC. https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM Approved Microsite FINAL.pdf

⁶¹⁴ 簡毓瑭、張珈瑋(2020) IPCC 氣候變遷與土地特別報告決策者摘要摘譯。 https://tccip.ncdr.nat.gov.tw/km abstract one.aspx?kid=20201111172619

耕地面積及禽畜飼養量皆逐年減量,再者,國內畜牧產業不是以飼養反芻動物為主,又因口蹄疫減少了豬隻飼養,所以進一步參採我國國家溫室氣體排放清冊報告可知⁶¹⁵,我國農業部門溫室氣體排放是以氣肥施用於土壤造成的排放量為主,不過已呈現逐年下降的趨勢,2018 年農業部門的碳排較2005 年減少約13.4%。2018 年我國農業部門(含農林漁牧)的溫室氣體排放量為5.8 Mt CO₂eq,約占我國當年總碳排量297 Mt CO₂eq 的2%,其中包含二氧化碳(CO₂)、甲烷(CH₄)、氧化亞氮(N₂O)等高暖化潛勢氣體之排放。參見圖5.4.1 可知,農業操作排放占農業排放中的大宗,達到47%,例如土壤中用於調整pH值的石灰與作為氮肥的尿素造成二氧化碳與氧化亞氮,水稻種植時水中有機質無氧分解產生的甲烷,禽畜腸胃發酵產生的氧化亞氮與甲烷,還有禽畜糞尿產生的甲烷等。農業的電力使用造成的排放位居第二,有27%,主要用於水產養殖、畜牧自動化、溫室等。另外26%排放則為燃料燃燒,主要源自漁船與農業幫浦設備的用油^{616,617}。

農業部門排放源

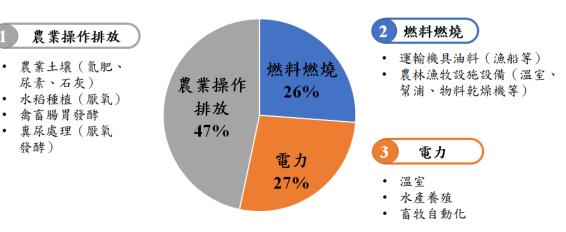


圖 5.4.1 農業部門排放源占比分析618,619

⁶¹⁵ 行政院境環保護署(2020) 2020 我國國家溫室氣體排放清冊報告。國家溫室氣體減量法規資訊網。https://ghgrule.epa.gov.tw/admin/resource/files/2020 年國家排放清冊報告.pdf

⁶¹⁶ 同前揭註 615。

⁶¹⁷ 行政院農業委員會(2021) 我國淨零排放目標期程及因應作為第 3 次研商會議簡報 (4 月 1 日)

⁶¹⁸ 同前揭註 615。

⁶¹⁹ 同前揭註 617。

2. 廢棄物部門

我國廢棄物部門溫室氣體排放量,在 2018 年為 2.9 Mt CO₂eq,約占我國當年總碳排量 297 Mt CO₂eq的 1%。廢棄物處理過程本身之排放占最大宗,達到89%,排放主要來自事業廢水(34%)、生活污水(29%)、掩埋(25%)等,其他包括垃圾焚化造成的 6%排放 (燃燒) 與各式處理設施用電的 5% (電力)。排放占比最高的事業廢水主要來自紙漿與紙張製造、肉類加工、酒類與澱粉生產、有機化工原料生產、食品加工、電子業、織布染整業、皮革製造產業等。事業廢水中的甲烷源自廢水處理的好氧、厭氧段,氧化亞氮則源自硝化、脫硝反應。排放占比第二的生活污水經化糞池厭氧反應處理後也會產生甲烷,另外含有的蛋白質等有機質則會在水中發生硝化、脫硝反應而產生氧化亞氮。排放占比第三的廢棄物掩埋則主要計算自產生沼氣中的甲烷620。

5.4.3 農業與廢棄物部門減碳選項分析

1. 農業部門

面對未來的淨零轉型,農業部門的減碳選項分析包括改變傳統農業操作模式、 減碳作為使成本增加以及試行農業部門碳權交易,以下分別簡述:

(1)改變傳統農法須長期監控以及互信協力:學者指出我國採慣行農法(見BOX 5.4.1)並大量進口、使用化學農藥及肥料等化石燃料相關製品,而這些製品除了在生產、運送與使用等階段將會產生溫室氣體外,其他未完全計入我國溫室氣體排放的項目,如農產品運輸(含進口糧食)、食品加工與食物浪費等,也可以說是隱形的排放源⁶²¹。推動淨零排放,將有賴於農民的配合,調整現有以慣行農法為主的農業操作程序,包括減少或更換農藥及肥料等使用,然而更換後將會對作物產量與品質所造成的影響,尚待更多的研究實證來評估。同時,

⁶²⁰ 同前揭註 615。

⁶²¹ 黄思敏(2021) 2050 農業淨零策略將公布 農委會擬試辦農業碳交易 農民減碳貢獻價值化。 環境資訊中心。https://e-info.org.tw/node/232037

在推動轉型的過程中,由於農民具有長期操作經驗且有其個人考量,如何導引農民形成淨零轉型的共識,以順利調整為有機農業、生態農業或再生農業,將是推動淨零排放的關鍵步驟。再者,依《109年農業統計要覽》可知⁶²²,2019年全國農牧戶數為 775,250 戶,計 2,694,472 人,我國農耕土地為 790,197 公頃(農耕土地係指不論種植與否,均可栽培作物之耕地),分為耕作地及長期休閒地,前者面積為 742,162 公頃(若進一步參採《108年臺灣地區農家戶口抽樣調查報告》 623,2019年全國可耕作地面積為 632,634 公頃)。我國從事農牧業之農牧戶家數是按可耕作地規模來統計的,有耕地者為 769,063 戶,其中1公頃以下的戶數累積占比高達 79.29%,未滿 0.5 公頃的戶數占比約 56.88%,所以對公部門而言須要投入相當的人力、時間等,分區域別與各農牧戶逐一溝通,協助技術改良且長期監測產量、品質的變化,更須要與各農牧戶建立起互信協力的關係,方能使淨零轉型得以順利推動。

- (2)減碳選項使成本上升獲利降低:除了前述農法的改變,另外在農業部門的電力使用與燃料燃燒上,若為減碳而改用綠電等再生能源,對農業生產者而言,或將增加總體的生產成本,而這些成本對農產品的銷售獲利造成的衝擊,是否有配套機制加以減緩?或是給予生產者相當的經濟誘因使其有參與意願?這些將是政府在推動相關減碳選項時應納入機制設計與影響評估的面向。
- (3)碳匯價值化宜兼顧生產、地力及公平:為使農業部門成為我國有效的碳匯,我國行政院農業委員會近來正積極試行農業部門的碳匯價值化方案⁶²⁴,為能取得農業生產力、土壤環境品質及農業生產者權益這三者之間的平衡,未來在方案推動的機制設計上,政府應將規劃充足的溝通管道與透明的資訊揭露,使農

⁶²² 行政院農業委員會(2021) 農業統計要覽(109年)。農業統計資料查詢。 https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx

⁶²³ 行政院農業委員會農糧署(2020) 108 年臺灣地區農家戶口抽樣調查報告。行政院農業委員會 農糧署。https://www.afa.gov.tw/cht/index.php?act=download&ids=117339

⁶²⁴ 行政院農業委員會(2021) 農委會成立專責淨零辦公室擘劃推動農業部門氣候變遷新策。行政院農業委員會。

https://www.coa.gov.tw/theme data.php?theme=news&sub theme=agri&id=8482

業碳匯方案能在各界利害關係人中間形成共識,以利落實推動進而促使農業部門的碳匯功能得以發揮。

Box 5.4.1 慣行農法(conventional agriculture)

為增加農作物品質、產量,在農業操作行為上多以施用化學農藥及肥料的 栽培方法為主,即為慣行農法,亦稱為傳統農法。

2. 廢棄物部門

我國廢棄物部門面對淨零轉型之減碳選項分析及主要挑戰包括(1)提升偏低的污水處理率、(2)提高偏低的甲烷回收率、與(3)改善的農業廢棄物再利用模式。我國的污水處理率雖逐年提高,但至今未達 70%,落後於鄰近的日本(78.0%)與韓國(92%),當然也落後於處理率更高達 99%的新加坡⁶²⁵。進一步細看可發現,六都中僅有新北市、臺北市達 90%左右,其他直轄市尚低於 70%,剩下縣市的平均甚至僅有 41%⁶²⁶。各地雖皆有污水下水道之工程規劃與進行,但顯然與妥善處置還有一大段路要走。污水處理僅是第一步,處理後產生的甲烷回收也是重要的一環,可回收的甲烷主要源自於污水處理與掩埋場,而我國的污水處理目前幾乎沒有甲烷回收機制,2018 年事業廢水處理的甲烷排放量 0.94 Mt CO₂eq,甲烷移除量為零;即使是妥善管理的廢棄物掩埋場,2018 年甲烷回收量(發電)也僅有0.062 Mt CO₂eq,占總量 0.603 Mt CO₂eq 的 10.2%,而尚有未妥善管理的掩埋場,於 2018 年就排放了 0.12 Mt CO₂eq 的甲烷⁶¹⁵。

表 5.4.1 為我國 2020 年農業剩餘資源統計⁶²⁷。以總量最大的就地翻耕掩埋 (218.4 萬公頓) 和堆肥(253.8 萬公頓) 為例,其雖已屬於行政院農業委員會 定義的妥善處理,但一般有機碳一年內有 60 wt%以上會以二氧化碳的型式逸

https://portal.stpi.narl.org.tw/index/article/10611

⁶²⁵ 黄松勳(2020) 臺灣水資源循環的挑戰與如何永續發展。科技政策觀點。

⁶²⁶ 內政部營建署(2021) 全國污水下水道用戶接管普及率及整體污水處理率統計表(2021 年 8 月)。https://www.cpami.gov.tw/最新消息/業務新訊/51-下水道工程處/9995-全國污水下水道用戶接管普及率及整體污水處理率統計表.html

⁶²⁷ 行政院農業委員會(2021) 農業剩餘資源處理及利用報告。

散⁶²⁸,可見掩埋與堆肥的處理方式對排放量有很大的影響。例如,堆肥可以先用於沼氣發電,再將剩餘的固體作為肥料;就地翻耕掩埋的深度、接觸空氣的時間,也會影響產生氣體的數量,故農業廢棄物再利用模式尚有很大的改善空間。

表 5.4.1 我國 2020 年農業剩餘資源統計629

單位:萬噸/年

農業剩餘資源	農業生產未利用殘體	生產使用之剩餘資材	禽畜糞
就地翻耕掩埋	211.3	7.1	-
作物栽培覆蓋	13.8	-	-
焚燒掩埋	19.3	1.3	-
倉庫墊料	6.0	-	-
育苗栽培介質	11.3	-	-
堆肥	11.2	15.6	227.0
飼料 (原料)	10.3	-	-
禽畜舍墊料	8.7	-	-
薪材、燃料	7.0	-	-
化製原料	11.4	-	-
其他	3.2	-	-
資源回收	-	1.9	0.2

廢棄物部門相關的創新案例包括貨櫃化可移動式生質氣化發電系統以及永豐餘沼氣發電系統。前者貨櫃化可移動式生質氣化發電系統為教育部宜花東區域推動中心利用東臺灣生質廢棄物豐富(如稻稈、果樹修枝、漂流木、竹質廢棄物、林業疏伐資材等)的特點,開發了貨櫃化可移動式生質氣化發電系統,不僅便於設置在發電廠不易建置的偏鄉,更可與台灣電力公司的市電電網併接,讓東臺灣有了發展生質能產業鏈的優勢,利於培育在地生質能源人才,並促進農村再造與能源轉型⁶³⁰。另一方面,永豐餘工業用紙公司的新屋廠則建有我國最大沼氣發電

-

Weil, R. R. & Brady, N. C. (2016) Soil organic matter. The nature and properties of soils (15th ed., pp. 544-600). Harlow, England: Pearson.

⁶²⁹ 同前揭註 627。

⁶³⁰ 白益豪(2021年1月26日)農林業廢棄物轉能源化—生質氣化技術。能源教育資源總中心。 https://learnenergy.tw/index.php?inter=knowledge&id=601

系統⁶³¹,從 2019 年第三季開始商轉,年發電量將近 2,000 萬度。永豐餘工業用紙公司製程水在預酸池中形成特定有機質後,會導入厭氧塔作為污泥態厭氧菌的養分,厭氧菌厭氧消化產出沼氣,同時繁殖更多厭氧菌。新屋廠厭氧塔的甲烷濃度(80%)接近天然氣,遠高於畜牧業的 65%,發電效率達到 40%,生產的電可與台灣電力公司併網,此外,發電機的餘熱還可再利用於造紙製程,其一年外售的厭氧菌約 2,500 噸。

5.4.4 我國農業與廢棄物部門現有減碳投入項目

1. 農業部門

有鑑於國際上積極推動的農業淨零碳相關政策(農業部門全球減碳趨勢請參見附錄 5A),我國主管部會行政院農業委員會正研擬農業部門碳匯價值化方案⁶³² 並評估試辦可行性,期達到減少碳排及增加碳匯的效果。為使友善農業的碳匯功能轉換成有價值的標的,再挹注回農業的永續發展上,方案中規劃未來可將務農的碳匯或減碳貢獻訂價,販售給企業作為碳排抵減,而企業提供的資金擬鼓勵或輔導生產者投入對友善環境的農業方式。換言之⁶³³,關於農業、作物與土壤碳匯,請參見 3.2 節自然碳匯一節。依循前述我國農業部門三大排放源的統計分類,接續將分別說明國內公私部門已採取或正在進行中的減碳選項,如下:

(1)「農業操作程序」的減少碳排放選項

國內已有農民研究歐美新興的不整地耕作方式⁶³⁴,並引進全國第一台「覆蓋 作物滾壓機」及「免耕播種機」,嘗試在耕作過程中減少翻土耕犁並配合種植作 物加以覆蓋,期達成提升農地固碳的成效。另一方面,國內農民亦藉由水旱田輪

-

⁶³¹ 王薏絜(2019年9月16日)傳產造紙大變身!搶綠金設「全台最大沼氣發電系統」。TVBS 新聞網。取自 https://news.tvbs.com.tw/life/1201460

⁶³² 同前揭註 624。

⁶³³ 黃思敏(2021) 2050 農業淨零策略將公布農委會擬試辦農業碳交易農民減碳貢獻價值化。環境資訊中心。https://e-info.org.tw/node/232037

⁶³⁴ 林宜潔(2018) 友善耕作新嘗試!全國第一台不整地機械播種機,明辦示範說明會。農傳媒。https://www.agriharvest.tw/archives/12625

作的方式來保持土地原有地力⁶³⁵,因為豆科植物是自然界中最強的生物固氮體系,其共生的根瘤菌可將空氣中的氮素固定以供植物利用,所以採用水稻、雜糧(如大豆、紅豆)的輪作方式,可減少肥料的施用,甚至連水稻的病蟲害(如福壽螺、稻熱病等)發生機率也隨之降低,此外,若藉由物聯網感知器等技術配合蒐集田間的溫、濕度等水情相關數據,農民將可以採取遠端遙控來即時調控水稻田的水位外,也可透過水位的微調管理以減少甲烷的產生。再者,國內研究團隊亦進行水稻基因改良使其可耐旱⁶³⁶,以及重啟可抗旱抗氣候逆境的臺灣特有種—油芒的種植等研究⁶³⁷,對農業部門而言均是直接或間接可行的減碳選項。

(2)「電力使用」與「燃料燃燒」的減少碳排放選項

如前述分析,我國農業部門中,以溫室、水產養殖等為主要電力使用的作業項目,而在部份運輸機具(如漁船等)與設備(如幫浦、物料乾燥機等)上,則以燃料燃燒為主要動力來源。加上近年來為發展精緻農業,生產者逐步改善生產環境所需的各項設備與相關作業程序的自動化,以及導入人工智慧等技術輔助,這些運輸機具與設備多改以電氣化或本就採用電型式,導致國內農業部門的用電需求上升。參採經濟部能源局於2019年執行的「農業部門能源消費調查」可知638,2012年至2017年間該部門的用電需求年成長達12.1%,且整體用電量持續上升,因此政府正加速導入綠能的應用,包括提升再生能源使用(如農舍、畜舍屋頂或漁塭裝設太陽能板發電等)或是生質燃氣自用(禽畜糞尿等產生的沼氣作為發電或產熱燃料)等,前述各項已積極評估規劃與建置中。

_

⁶³⁵ 農傳媒(2020)【科技農領航】田間蒐集大數據自動監控水稻旱田科學省工—新豐碾米工廠。 https://www.agriharvest.tw/archives/49932

⁶³⁶ Emma stein (2019) 魚與熊掌可兼得,中央研究院團隊改良出既耐旱又提高產量的水稻。科技新報。https://technews.tw/2019/11/15/mybs2-%CE%B1amy-mybs1-gf14-rice-gene-editing/

⁶³⁷ 古碧玲(2020) 全球獨有,超級未來食物—台灣油芒重見天日! 比水稻小麥更營養,抗旱耐鹽耐逆境。上下游 News&Market (新聞市集)。https://www.newsmarket.com.tw/blog/131220/

⁶³⁸ 經濟部能源局(2019) 經濟部完成五年 1 次農業部門能源消費調查報告—精緻農業與綠能發展,帶動農業部門能源供需型態改變。經濟部能源局優良太陽光電系統光鐸獎。 http://www.topsolar.org.tw/show news.php?pID=357

(3)善用農林剩餘資材的減排選項

所謂農林剩餘資材,如稻草稻殼、雜糧作物剩餘資材、果樹剪定枝、林木剩餘資材、竹林剩餘資材與漂流木等,過往多採露天燃燒的方式,過程中將釋放大量二氧化碳及細懸浮微粒(PM2.5)至環境中,其伴隨產生的濃煙亦會導致空氣品質惡化639。若將稻草等剩餘資材切碎後就地掩埋,土壤中的稻草稻梗恐來不及在下期稻作插秧前完全腐爛,且土壤中的氮素會因微生物分解而減少,並產生有機酸及甲烷影響秧苗的生長狀況640。因此,將農林剩餘資材改以無氣裂解的方式產製生物炭(biochar),也就是在高溫下以很少或無氧的方式加熱木材、樹葉或枯死的植物等來生產的木炭,將可封存固體形式的碳長達幾個世紀,以及變成可以埋在地下的碳匯641。對農業部門而言,此種將農林剩餘資材再製成生物炭的減碳選項,其製程可促進剩餘資材再生、減少空氣污染與碳排,所產製的生物炭可添加至土壤中調整土壤物理及化學特性,進而增加單位土地面積的作物產量,可同時兼顧資源、環保與經濟。但是,農林剩餘資材不同製成的生物炭性質有所差異,因此,添加生物炭的土壤仍須持續監控其化學性及生物相,並評估可能造成的影響642,643。

2. 廢棄物部門

廢棄物部門方面,廢棄物處理多為成熟技術,碳排放未能繼續有效降低的主因是在沒有足夠的誘因,而非缺乏技術(廢棄物部門全球減碳趨勢請參見附錄5B)。污水處理部分,例如工業技術研究院開發的上流式厭氧污泥床在2015年時

-

⁶³⁹ 行政院農業委員會農糧署(2018) 勿露天燃燒稻草維護空氣品質 你我一起來。

⁶⁴¹ 姜唯(2019) 潛力無窮的黑暗物質:生物炭一年可抵消 10 億噸碳。環境資訊中心。https://e-info.org.tw/node/221739

⁶⁴² 陳盈蓁、徐仲禹、倪禮豐(2018) 淺談生物炭於農業之應用。花蓮區農業專訊第 106 期。 https://www.hdares.gov.tw/upload/hdares/files/web structure/12695/04.pdf

⁶⁴³ 蔡佳儒、吳耿東(2016) 臺灣農業廢棄物製備生物炭之未來與展望。農業生技產業季刊, No.46。http://www.biotaiwan.org.tw/mag/image_doc/46/04 臺灣農業廢棄物製備生物炭之未來 與展望.pdf

就已累積非常多實績⁶⁴⁴,是國內廢水甲烷回收的重要選項,已廣泛應用於光電、 化工、食品、發酵、造紙等國內產業,國外則有馬來西亞、越南的食品與釀酒業 採用,具有初設及操作低成本的優勢。上流式厭氧污泥床將產出沼氣後的固、液、 氣體經三相分離器分離,厭氧菌污泥在沈澱區沈澱後回到反應槽,處理水則放流, 同時收集沼氣作為燃氣之用。垃圾掩埋部分,上述掩埋場改善方向⁹⁹¹ 都不需要 特別的技術(例如氣體收集系統定期維修、垃圾滲出水妥善收集等);政府已知 改善方法,來推動掩埋場的改善,例如 2019 年 7 月 2 日決標的「108 年八里垃 圾掩埋場邊坡及排水設施改善工程」(招標金額新臺幣 317 萬 1,636 元),或是 2021 年 3 月 22 日開標的「110A196 無營運中焚化廠 8 縣(南投、雲林、新竹、 離島及花東)推動精進型家戶垃圾處理技術支援計畫」(預算金額新臺幣 1,500 萬 元),只是改善工作推動的速度不佳,以致尚未能有效降低碳排放,另外,整體 的管理也有強化的必要,如 2020 年 11 月至 2021 年 3 月間,我國的掩埋場就至 少發生了 10 起火災⁶⁴⁵。

5.4.5 政策建議

為達成我國 2050 淨零排放的目標,農業與廢棄物部門面對的問題與挑戰來 自於如何與農業生產者協力啟動行為與思維的轉型,以及強化廢棄物處理時採行 降排等創新技術與提升廢棄物再利用占比。由於此二大部門關聯的層面甚廣,包 含農、林、漁、畜牧與生態保育等面向,建議國內的農業與廢棄物部門在推動減 碳措施時可包含的規劃重點及方向有:

 農業部門肩負著保障我國糧食安全的使命,在減少化學農藥及肥料的使用或 改採其他可維持地力的農法下,須審慎評估如何達成淨零排放與糧食安全的 雙贏目標。另外,為降低甲烷的產生,除透過禽畜飼料改善外,國內水稻基因

⁶⁴⁴ 張建中 (2015 年 4 月 19 日)。工研院擠下全球龍頭成美光顧問。YamNews。 https://n.yam.com/Article/20150419984243

⁶⁴⁵ 孫文臨 (2021 年 3 月 2 日)。新北八里掩埋場大火持續悶燒 環保局:初步判斷乾電池自燃。環境資訊中心。https://e-info.org.tw/node/229757

改良亦有其減排功效,只是不易在短期間達減排量目標。綜整來看,在已成熟 的農業相關減碳技術上,如何觸動農業生產者並引發採行低碳農法的意願,可 能為首要推動的減碳作為。

- 2. 為達成農業部門在電力使用與燃料燃燒上的淨零排放,透過再生能源及生質能來取代化石燃料的使用,是勢在必行,或是對機具設備電氣化與生產環境自動化全面改採綠電,其減排成效將可再提升。因此,為加速導入綠能的應用,則可透過整合原有農業部門營運模式,包括農舍、畜舍屋頂或漁塭裝設太陽能板發電,或利用禽畜糞尿等產生的沼氣作為發電或產熱燃料等方式。
- 3. 將農林剩餘資材妥善處理並再製成生物炭的減碳措施,不僅促進剩餘資材再生,亦可減少空污與碳排的問題,此外,將生物炭添加至土壤中調整土壤物化特性以提升單位土地面積的作物產量,整體而言,可發揮兼顧資源、環保與經濟之綜效。
- 4. 為善用農業部門天然碳匯能力,建議依循我國正在推動之農業部門碳匯價值 化方案,以及參採聯合國清潔發展機制(Clean Development Mechanism, CDM) 等國際機構驗證方式^{646,647},來協助農民申請碳權抵換並作為碳權交易機制設 計基礎。期藉由適當的經濟誘因及公平透明的農業部門碳權交易機制,促成以 自然為本的天然碳匯解決方案來有效運作,並緩解我國零碳排轉型時依賴無 碳能源之壓力。
- 5. 關於增強廢棄物部門甲烷回收誘因,可獎勵企業或農戶,每利用廢水或農業廢棄物沼氣發一度電,就提供一定比例的額外用電優惠;公共事業廢水與掩埋場則須訂定沼氣逸散比例逐年下降的目標。我國廢棄物的溫室氣體排放主要來自污水處理、垃圾掩埋場及未妥善利用的農業廢棄物。污水處理如上述永豐餘利用造紙製程水,建置了我國最大沼氣發電系統,垃圾掩埋場的甲烷收集發電

⁶⁴⁶ 陳慧萍(2022) 行政院農委會主委陳吉仲正面迎戰氣候變遷 邁向農業淨零排放。豐年雜誌 2022 年 4 月號。農傳媒。https://www.agriharvest.tw/archives/79644

⁶⁴⁷ 行政院農業委員會(2022) 農委會主委陳吉仲:台灣農業碳權年估75 億產值。農業科技決策 資訊平台。https://news.ltn.com.tw/news/life/breakingnews/3862149

亦行之有年⁶⁴⁸,顯見甲烷收集與利用的技術基本上已相當成熟,但低通量低濃度甲烷的收集與利用技術尚待進一步研究開發。惟「我國國家溫室氣體排放清冊報告」中事業廢水的甲烷移除量數十年都是掛零,妥善管理之掩埋場的甲烷發電利用率大約只有 10 wt%,90 wt%都逸散至大氣,另外,堆肥也會造成 60 wt%以上的碳逸散量。政府應從投資研發尖端技術,結合生物、化工等領域專家,共同研發低通量低濃度甲烷收集與利用的實際解決方案,才能有效降低相關部門的甲烷碳排放。政府亦應從政策著手鼓勵提出解決方案,例如企業或農戶若能夠使用來自廢水或農業廢棄物的沼氣自主發電而滿足了自身部分的用電需求,剩下的用電量建議按比例予以優惠。至於公共事業非以營利為目的,可直接訂定目標,儘速讓全國的掩埋場都被妥善管理,且要求垃圾滲出水確實回收,公共事業廢水處理場與掩埋場的甲烷發電利用率也必須逐年提升。

.

⁶⁴⁸ 張祺燕(2014) 高雄市政府環境保護局掩埋場沼氣發電成效探討。高雄市環境保護局。 https://ksepb.kcg.gov.tw/FileDownLoad/FileUpload/20191027121536893437.pdf

5.5 小結

根據我國 2019 年溫室氣體排放量的統計,運輸部門的排放量約為 37 Mt CO₂eq,約占總排放量的 12.9%,主要排放源為公路運輸;而在住商部門的排放量為 57.7 Mt CO₂eq,約占總排放量 20.1%,主要排放量來自於住宅與其他服務業的電力使用;在農業部門的排放量約為 6.0 Mt CO₂eq,占總排放量為 2.1%,主要排放量來自農牧及林業,而廢棄物部門的排放量為 2.9 Mt CO₂eq,占總排放量為 1%。這些部門(運輸、住商、農業/廢棄物部門)的總排放量為 103.6 Mt CO₂eq,占全國總排放量約 36.1%,亦不容小覷,為達到 2050 年溫室氣體淨零排放的目標,將有以下建議各部門的零碳減排推動措施。

我國運輸部門未來應配合國際趨勢進行全面電氣化的轉型,其中主要的溫室氣體排放來源為公路運輸系統,因而汽車及機車隨著國際市場的電氣化,建議要廣設充電站以利於電氣化的發展並可提升民眾使用意願。而在運輸載具全面電氣化的過渡期間,建議可訂定再生燃料的相關法規,儘速建構再生燃料使用規範以同步減少使用化石燃料降低碳排放量。另外,發展與推動大眾運輸也是大幅度減少溫室氣體的排放,應建議鼓勵大眾運輸工具的布建與使用,以便減少私人運具的過度使用。最後,航空業與航海業在邁向全面電氣化的發展過程中,應該要加速發展低碳燃油以利於大幅減少碳排放。

在住商/建築部門的部分,主要造成碳排放的來源為日常使用電力設備及建築材料在生產過程的排放,建議應推動既有建築物改造與翻修,如透過建築物輕量化、延長建築的使用壽命,以及使用木造建築取代鋼筋水泥來降低建築材料生產所造成的碳排放。另外,為降低住商/建築部門因空調設備使用造成消耗電力所造成的碳排,建議要投入空調系統的新興技術研發,並且在基礎設施的建置上須導入智慧化的能源管理系統與具彈性的電力調度,以協助達到節能減碳的最佳效益。

在農業/廢棄物部門的部分,主要的碳排放來源為農業操作與廢棄物處理, 建議要推行農業生產者啟動行為模式與思維的轉型,以低碳農法來調整傳統農牧 作法以提升減碳排放之成效,而在農林漁牧設備也建議要全面的電氣化並且要導入綠能科技的應用範疇。另外,在農林剩餘資材的妥善處理下,不僅可再製成生物炭添加入土壤提升作物產量,亦可減少空污與碳排放。最後,建議也應投入經費於研發甲烷收集與發電的前瞻技術,並且對於企業與農戶在廢棄物甲烷回收進行相關獎勵措施,以解決廢棄物甲烷排放的問題。